
Making HTAP a reality

Zhou Sun
Mooncake Labs

 With Postgres (+ lakehouse)

Why HTAP?

Transactions
Apps

Orders

Data Warehouse
Analysts
DS & ML

Columnstore

Fast for OLAP, Slow on OLTP

Rowstore

Fast for OLTP, Slow on OLAP

Transactions
Apps

Orders

Data
warehousing
DataScience

The Reality?

Search

Log
analytics

User facing
Dashboard

Feature
serving

Filter on a
Wide table

What went wrong?

OLTP ++
Great, Reliable

And $$$$

HTAP feature:

- Cluster columnstore key
- In memory columnstore
- HeatWave

No real analytics

- Single box
- Vendor Lock

Oracle/ sql-server

Hook two proprietary systems
A new OLTP engine

- You may not trust as much

TiKV

Modified Mysql

A new OLAP engine

- Won’t evolve as fast

Diverged Clickhouse 2018

Flink

Oracle/ sql-server

TiDB / ByteHTAP

HTAP native engine
Cool, Performant

But need sacrifice one or both

Oracle/ sql-server

TiDB / ByteHTAP

SingleStore / HANA/ CedarDB

I want the best

DB2

MySQL

NoSQL (MongoDB)

NewSQL (Spanner, Cockroach, Vitess)

OLTP

DB2

Vertica

Hadoop

cloud data warehouse

OLAP

LakeHouse 👑

1980s

2020sPostgres 👑

Lakehouse

What is a Lakehouse

Proprietary

OLAP
system

Open Table Format,
Parquet on Object Store

Query
engine

Open Format
Parquet on Object Store

Query
enginePostgres

Open Format
Parquet on Object Store

Postgres Query
engine

��

Lakehouse

Mooncake is a composable
framework

1.Replicate from Postgres To
Lakehouse

2. Fast analytics queries against
Lakehouse

Logical replication
just works…

● Streaming Xact
● 2PC
● Parallel apply

And for Analytics

What if
Build an engine from scratch

To handle writes from PG?

Zero-ETL
!= Write Some Logs to Object-store

● Columnstore
● Up-to-Date
● Queryable
● Optimized

CDC from
Postgres

Index

Union Read

Mooncake 🥮

Arrow

Lakehouse

Parquet Deletion Vector

Index

periodic
flushes

Index

Position
Deletion Log

Real-time Columnstore

● Buffer

○ No small parquet files

● Index

○ No delay for update/deletes

● Write-aware table optimization

○ No conflicts

CDC from
Postgres

Index

Union Read

Mooncake 🥮

Arrow

Lakehouse

Parquet Deletion Vector

Index

periodic
flushes

Index

Position
Deletion Log

Postgres-native

● Streaming Transaction

○ Apply transaction immediately & Commit or Rollback

○ Pick any existing CDC tool for any system

■ Try delete a 100M row table from postgres

■ See the delay

● KeepAlive LSN & Exactly once

● Initial Loading

Fast Query
Mooncake/Lake from Postgres

Vectorized Execution on Columnstore

Processes data in small batches rather than row-by-row

• SIMD acceleration

• Encoded data

• Minimize function calling overhead

pg_duckdb

pg_mooncake

Read optimizations

● Consistent Read

○ Read with LSN, Mooncake wait until that LSN

● Union Read

○ LakeHouse Files (Parquet + DeletionVector)

○ Local Files (Arrow + New Deletion Log)

Start from
A Postgres Extension

And Scale to Infinite

Some numbers

Ch-Bench (TPC-C + analytics)

Collocated pg_mooncake, On I4I.4X , 1000 Warehouses, 300MB/s WAL

Replication Delay < 1s , and analytics freshness < 1.5s

Analytics queries: Avg < 10s

Official benchmark releasing soon

Simple

Thank you!

● Website: https://mooncake.dev/

● Email: founders@mooncakelabs.com

● pg_mooncake: https://github.com/Mooncake-Labs/pg_mooncake (MIT License)

● moonlink: https://github.com/Mooncake-Labs/moonlink

https://mooncake.dev/
mailto:founders@mooncakelabs.com
https://github.com/Mooncake-Labs/pg_mooncake
https://github.com/Mooncake-Labs/pg_mooncake

